
An API documentation system – pragmatic advice for
program internals too

Sébastien Wilmet

First version: January 2020
Last update: May 2022

Introduction

This article looks at writing an API — either for libraries or programs — and the
surrounding tooling that makes the programmers’s life easier.

Note that not all software projects or development platforms follow the requisite
ingredients that we will outline, so there is room for improvement.

Along the way, we will give practical advice, especially for an application codebase,
to document at least the most important parts, that is, to have a good overview of
a software project.

1 Working with libraries

A library usually has documentation to use its API. The tools that you use to read
an API documentation depends from one development platform to another, but here
are some desired functionality:

• The possibility to read the documentation without opening the source code of
the library.

• A dedicated application for browsing and searching API documentation, with
an advanced search entry to find symbols.

• Having the API browser linked with the text editor. From the text editor,
when you want to look at the documentation of the symbol located under
the cursor, a simple key press jumps to the corresponding symbol in the API
browser1.

Also, don’t forget what does the “I” of “API” mean. API is the acronym for Appli-
cation Programming Interface. The interface is the external surface of the library,
what users need to know about it in order to use it. If properly done, the interface
hides the implementation details (it’s called information hiding, or encapsulation).
For the library developer, it means that everything that is not part of the API can
be changed without incrementing the major version number of the library, to keep

1An alternative is to have a popup window that is shown within the text editor to show the
symbol’s documentation. But the author of this article prefers the first approach with the API
browser window maximized, to have more space to read the documentation, and also to quickly
read other related APIs.

1



backward compatibility. Keeping certain details hidden gives more freedom for the
library developer. Conversely, library users hate when there are API breaks. So it’s
not a good solution to make everything public, there needs to be a design balance
between what is made public and what not.

An API without documentation is usually not an API. Just providing the functions’s
signatures (parameter types and return value type) is often not sufficient to know
how to use the functions. But in a lot of simple cases, the function signature is
enough, with the names and the types it’s self-evident. So the library developer
may be tempted to write documentation only for the functions that require it. The
problem is the following: for the undocumented functions, can their signatures be
extracted from the source code, to show it in the API browser? If not, then the
library users need to read the source code, and this can lead to other problems (read
the next paragraph).

If you need to open the source code of a library to read its API, there is the risk
to read its implementation and see implementation details. Then the user of the
library will be tempted to take advantage of the implementation details. This can
lead to bad situations. If the library developer change that implementation detail,
it will break the application. Then the application developer will be angry against
the library developer. Or when the library developer knows in advance that if he or
she changes that implementation detail it will break certain applications, then he
or she may decide to not make the change, which brings the library developer with
less freedom (or the need to create a new major version).

All in all, the user of a library is happy when the documentation is available in an
API browser, or at least when there is no need to open the library source code. If
the documentation is well structured, with a table of contents and related classes
grouped together, it makes the library easy to learn. When needing to open the
source code, there are way too much information to have a gist of the library API
as a user, it takes more time to find the information, such a library is thus harder
to learn and to work with.

2 Working on an application

We have just seen that using a library can be relatively easy, if it is well done there
is no need to open the source code, and the information can be found quickly thanks
to the help of an API browser application.

When developing an application, the developer should be aware that it’s also possible
to write API documentation, with that documentation available in an API browser.
I think it is safe to say that most applications are not written like this, at least not
thoroughly, except the applications that provide a plugin system. In other words,
for most applications the developer always needs to open the source code of a class
in order to know how to use that class.

We don’t advocate for a thorough API documentation for the application internals,
but if there is the need to always open the source code of a class in order to know
how to use it, this leads to the following problems:

• It takes more time to find the information, there is too much information.

• For a newcomer who has never worked on the application before, it takes much
more time to get accustomed with the codebase.

2



When a new application is written, when the project is young, the codebase is still
small and the developer knows very well the code, so the developer doesn’t feel the
urge to write API documentation. Then it just continues like that, the codebase
grows and grows, documentation comments are added to certain functions that need
it, but that’s it, the developers work by opening the source code, not by reading the
API of a class in an API browser.

When developing a new application, what we recommend to do more or less early on
during the development phase, is to write at least some of the API documentation.
Especially the most important parts, which include the class descriptions, to have a
good overview of the codebase. A pragmatic way of handling this is to not require
to document every details for every individual functions, and to put the tools in place
in order to have the API documentation system ready for that software project.

Conclusion

The emphasis, especially for documenting an application codebase, is to have a good
overview of the piece of software. Having a table of contents and class descriptions
are the most useful.

Good API tools make the life of developers easier, and certainly when a codebase
grows and is a long-running project. Think about future developers working on the
codebase, and also for your own future needs.

Other ways to put it is to lower the barrier to entry for newcomers, and to have a
good way to manage complexity in a software system.

Revisions:

• January 2020: initial version, with as title “Trying to convince application developers to
write API documentation”.

• May 2022: new and better title, rewrite the introduction, add a conclusion and emphasize
on a pragmatic way when targeting an application codebase.

3


	Working with libraries
	Working on an application

